
Basic Graphing w/ GGPlot2

An Introduction to Visualizations

Choosing a
Visualization

Consider Your Variables:

Are you plotting one, two, or even
three variables?

Are your variables discrete or
continuous?

Continuous: Can your variable take any value
within a range of possible values? Ex. Age,
Height, Distance

Discrete: Does your variable take one of a few
specified values? Is your variable organized
into groups? Ex. Color, Species, Type

*Note: Discrete data can also be expressed in
numeric terms (ie. Species 1 through 4)

Example Plots

The following plots were created using the data from the mpg data set found in the GGPlot
library (using the GGPlot library will automatically let you use the mpg data set). The mpg
data set contains several variables relating to cars. Use head(mpg) to learn more about these
variables.

To follow along, first create a GGPlot object for the variables you are interested in:

library(ggplot2)

a <- ggplot(mpg, aes(hwy)) #hwy is the name of a column in the mpg data set

a2 <- ggplot(mpg)

These functions create 2 GGPlot objects we will use to create visualizations

Plotting w/ One Continuous Variable

Area Plots: Similar to dot plots; histograms; and
frequency plots, area plots show the amount of
times a value is present in a dataset. Any time you
want to measure one continuous variable, these
plots are a good option.

Graph Code:

a + geom_area(stat="bin", binwidth =1, fill = "Dark
Orange") + xlab("Highway Miles per Gallon(hwy)”)

- binwidth = 1: is a parameter used to set the ranges over
which your variable is measured

- fill = “Dark Orange”: is an aesthetic parameter which lets
you select a color for your graph

- Xlab(): is a function that sets the label of the X-axis

Plotting w/ One Continuous Variable

a + geom_dotplot(binwidth = 1/2) +
ylim(c(0,30))

- Ylim(c(0,30)): manually sets the y-axis
to go from 0 to 30. Without ylim() your
count will be a scaled value between 0
& 1

- binwidth =1/2: here is used to set the
size of the dots

a + geom_histogram(binwidth = 5, color =
"Black", fill = "Light Blue”)

- color = “Black”: is a parameter that sets
an outline color

- binwidth = 5: here is used to specify the
range for the bars in your histogram

a + geom_freqpoly(binwidth = 1)

Plotting w/ One Continuous Variable

Density Plots: Density plots are similar to
frequency plots; however, instead of measuring
counts they measure frequency as a percentage
of the total data. (Ie. About 4% of the cars
measured would get 30 miles per gallon on the
highway).

Graph Code:

a + geom_density()

Plotting w/ One Discrete Variable

Box Plots: Measure the occurrences of each
factor within a discrete variable. A useful graph
for anytime you want to visualize a discrete
variable.

Graph Code:

b <- ggplot(mpg, aes(fl)) #Creates a GGPlot object

b + geom_bar(aes(fill=fl), show.legend = FALSE) +
xlab("Fuel Types”)

- aes(fill = fl): Maps different colors to different factors of
Fuel Types (in the data set, the fuel types column is
called fl)

- Show.legend = FALSE: Since aes(fill) will
automatically create a legend that, for our purposes, is
redundant so we manually turn it off

Plotting w/ Two Continuous Variables

Continuous Point Plots are a simple way to
display the relationship between two continuous
variables.

Graph Code:

c <- ggplot(mpg, aes(hwy, cty))

c + geom_point() + xlab("Highway Miles per Gallon
(hwy)") + ylab("City Miles per Gallon (cty)”)

- In this example, aes() is used to map the two variables
to the x and y axis, respectively

Plotting w/ Two Continuous Variables
Geom_text and Geom_label are two types of labelled
continuous plots. They function very similarly to a continuous
point plot, only labeled.

Graph Code:

#Creating a subset of the mpg data for cleaner graphs:
c_short <- ggplot(mpg_short, aes(hwy, cty))

cs + geom_label(aes(label = hwy))

cs + geom_text(aes(label = hwy), nudge_x = 1, nudge_y = 1)

- aes(label = hwy): manually sets the labels to display the highway mpg
values, but either variable can be specified

- nudge_x & _y: can be used to offset the labels from each other so
there is no overlap of the labels

Plotting w/ Two Continuous Variables

Graph Code:

#Creating a subset of the mpg data for cleaner graphs:
c_short <- ggplot(mpg_short, aes(hwy, cty))

c_short + geom_label(aes(label = hwy))

c_short + geom_text(aes(label = hwy), nudge_x = 1, nudge_y = 1)

- aes(label = hwy): manually sets the labels to display the highway mpg
values, but either variable can be specified

- nudge_x & nudge_y: can be used to offset the labels from each other
so there is no overlap of the labels

Plotting w/ Two Continuous Variables
Quantile Plots overlay three trend lines correlating to
different percentiles. These plots should be used if
there is a reasonable assumption that the trend will
change based on the severity of one variable.

Graph Code:

c + geom_quantile()

- quantiles(c(Q1, Q2, Q3)): can be added within the
geom_quantile() function to manually set desired percentiles. By
default the values are set to .25, .50, and .75, respectively

Plotting w/ Discrete Variable

Box Plots: Measure the occurrences of each
factor within a discrete variable. A useful graph
for anytime you want to visualize a discrete
variable.

Graph Code:

b <- ggplot(mpg, aes(fl)) #Creates a GGPlot object

b + geom_bar(aes(fill=fl), show.legend = FALSE) +
xlab("Fuel Types”)

- aes(fill = fl): Maps different colors to different factors of
Fuel Types (in the data set, the fuel types column is
called fl)

- show.legend = FALSE: Since aes(fill) will
automatically create a legend that, for our purposes, is
redundant so we manually turn it off

Plotting w/ a Continuous and Discrete Variable

The Column Plot displays the respective counts
of a continuous variable by each factor of a
discrete variable. These graphs are useful for
visualizing c.

Graph Code:

f <- ggplot(mpg, aes(class, hwy))

f + geom_col(aes(fill = class), show.legend = FALSE)

Plotting w/ a Continuous and Discrete Variable

The grouped box plot creates a visualization to
easily compare the quantiles of a continuous
variable based on the different factors you’re
interested in.

Graph Code:

f + geom_boxplot()

Plotting w/ a Continuous and Discrete Variable

Dot plots can also be used with 2 variables to
create a graph that shows the counts and how
values of a continuous variable are distributed
for each factor level of a discrete distribution.

Graph Code:

f + geom_dotplot(binaxis = "y", stackdir = "center",
binwidth = 2/3, aes(fill = class), show.legend = FALSE)

- stackdir = “center”: is a parameter that sets which
direction the points extend from. Other options include
“up” and “down”

- binaxis = “y”: sets the axis on which data points are
compiled

Plotting w/ a Continuous and Discrete Variable

Similar to the grouped dot plot, the violin graph
displays an approximate distribution of your
continuous variable for different factor levels.

Graph Code:

f + geom_violin(fill = "Light Blue”)

- fill = “Light Blue”: Sets the color of the ‘violins’ to light
blue

One Step
Further
Try New Things:

The functions mentioned in this
guide are not comprehensive by any
means. GGPlot objects also contain
a long list of parameters to create
detailed and high-level graphs.

All GGPlot2 functions can be found
in R documentation. To find the
complete documentation for any
function, type “?[function]” into the
console tab.

